
SAMPLE PROJECT

WEB APPLICATION SECURITY SCAN REPORT

CONFIDENTIAL

SCAN PROJECT

SAMPLE PROJECT

WEB APPLICATION URL

http://192.168.1.47/

SCAN STARTED

02 Jul 2020 14:12

SCAN COMPLETED

02 Jul 2020 15:07

CREATED BY

scanrepeat.com

http://192.168.1.47/
https://scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 2

Tel: +1 (415) 340-8020

CONFIDENTIALITY STATEMENT

All information contained in this document is provided in commercial confidence for the sole

purpose of use by an authorized user in conjunction with ScanRepeat products. The pages

of this document shall not be copied, published, or disclosed wholly or in part to any party

without ScanRepeat’s prior permission in writing, and shall be held in safe custody. These

obligations shall not apply to information which is published or becomes known legitimately

from some source other than ScanRepeat.

COPYRIGHT INFORMATION

Copyright © ScanRepeat 2020

No part of this document may be reproduced in any form or by any means or be used to

make any derivative work, including translation, transformation or adaptation, without explicit

prior written consent of ScanRepeat.

CONTACT INFORMATION

ScanRepeat

a Ventures CDX company

USA

117 Park Avenue

San Jose, CA 95113

EMEA

Laciarska 4

50-104 Wroclaw, Poland

Website: https://scanrepeat.com

Email: contact@scanrepeat.com

Tel: +1 (415) 340-8020

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 3

Tel: +1 (415) 340-8020

Table of Contents

Confidentiality Statement 2

Copyright Information 2

Contact Information 2

Executive Summary 4

Security Timeline 4

Risk Summary 5

Risk Scoring 6

Alert Definition 7

Open Source Tools Used 8

Scan Project Settings 9

Security Scan Results - Detailed Security Alerts 10

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 4

Tel: +1 (415) 340-8020

Executive Summary

This report documents the results of a web application security scan performed against the

web application available at the following URL: by ScanRepeat http://192.168.1.47/ (https://s

 service that started on 02 Jul 2020 14:12 and completed on 02 Jul 2020 15:canrepeat.com)

07. The option to Scan as a Logged In User was disabled, selected scan type was Active.

The scan results suggest that the tested web application has a of security in place. low level

The test identified 36 potential security issues including .12 issues of HIGH security risk

The summary and timeline of discovered security issues are presented in the sections

below. Full details of all issues found with exact locations, descriptions and possible

solutions are documented in the “Security Scan Results - Detailed Security Alerts” section.

Security Timeline

The timeline of the potential security issues identified in the last days:

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/
https://scanrepeat.com
https://scanrepeat.com
https://scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 5

Tel: +1 (415) 340-8020

Risk Summary
The breakdown of the potential security issues identified during the last security scan:

Risk Level HIGH: 12

Risk Level MEDIUM: 6

Risk Level LOW: 9

Risk Level INFO: 9

Total Alerts: 36

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 6

Tel: +1 (415) 340-8020

Risk Scoring

All identified vulnerabilities are classified according to CWE Common Weakness

Enumeration () list of common software security weaknesses and WASC (CWE database)

Threat Classification (), and then ranked based on the potential impact (WASC database)

and likelihood factors between Informational, Low, Medium and High risk scores.

The assigned risk scoring, whilst provided for informative purposes, could be used to

determine the severity and urgency of the reported vulnerabilities.

Risk Score Description

Informational (INFO)
Informational level issues provide additional insights about your application security features and

configuration.

Low (LOW)
Low level issues might not not individually constitute a critical risk these can be used for more

advanced attacks when used with each other.

Medium (MEDIUM)
Medium level issues can lead to a very high risk when combined together, these should be resolved

with a priority.

High (HIGH)
High level issues individually pose a very high risk and can lead to a very serious impact on data

integrity and confidentiality or the availability of the overall application.

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://cwe.mitre.org/
http://projects.webappsec.org/w/page/13246978/Threat%20Classification

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 7

Tel: +1 (415) 340-8020

Alert Definition

The security issues discovered in the scanned web application are reported in detail as

security alerts with the following attributes:

Risk Score (XX) Estimated risk score of the identified issue with the number of occurrences

Alert Name Vulnerability name

Description Vulnerability description

Instances Number of occurrences found

URL / Method URL and request method (GET/POST) of the vulnerable location

Solution Possible solution / mitigation

Other Information Any supplementary information documenting the issue discovery

Reference External references describing the problem

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 8

Tel: +1 (415) 340-8020

1.

2.

Open Source Tools Used

ScanRepeat uses the following open source tools as part of its security scanner:

OWASP ZAP: https://www.zaproxy.org/docs/

RetireJS: https://retirejs.github.io/retire.js/

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://www.zaproxy.org/docs/
https://retirejs.github.io/retire.js/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 9

Tel: +1 (415) 340-8020

Scan Project Settings

Scan Project: Sample Project

Scan Frequency: Daily

Target URL: http://192.168.1.47/

Scan Type: Active

Scan Date: 02 Jul 2020 14:12

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 10

Tel: +1 (415) 340-8020

Security Scan Results - Detailed Security Alerts

High(27) - Anti CSRF Tokens Scanner

Description

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP

request to a target destination without their knowledge or intent in order to perform an

action as the victim. The underlying cause is application functionality using predictable

URL/form actions in a repeatable way. The nature of the attack is that CSRF exploits the

trust that a web site has for a user. By contrast, cross-site scripting (XSS) exploits the

trust that a user has for a web site. Like XSS, CSRF attacks are not necessarily cross-

site, but they can be. Cross-site request forgery is also known as CSRF, XSRF, one-

click attack, session riding, confused deputy, and sea surf. CSRF attacks are effective in

a number of situations, including: * The victim has an active session on the target site. *

The victim is authenticated via HTTP auth on the target site. * The victim is on the same

local network as the target site. CSRF has primarily been used to perform an action

against a target site using the victim's privileges, but recent techniques have been

discovered to disclose information by gaining access to the response. The risk of

information disclosure is dramatically increased when the target site is vulnerable to

XSS, because XSS can be used as a platform for CSRF, allowing the attack to operate

within the bounds of the same-origin policy.

Instances 27

URL / Method

 POST http://192.168.1.47/vulnerabilities/javascript/

 GET http://192.168.1.47/vulnerabilities/xss_d/?default

 POST http://192.168.1.47/vulnerabilities/exec/

Out of 27 instances

Solution

Phase: Architecture and Design Use a vetted library or framework that does not allow

this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard. Phase:

Implementation Ensure that your application is free of cross-site scripting issues,

because most CSRF defenses can be bypassed using attacker-controlled script. Phase:

Architecture and Design Generate a unique nonce for each form, place the nonce into

the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not

predictable (CWE-330). Note that this can be bypassed using XSS. Identify especially

dangerous operations. When the user performs a dangerous operation, send a separate

confirmation request to ensure that the user intended to perform that operation. Note

that this can be bypassed using XSS. Use the ESAPI Session Management control.

This control includes a component for CSRF. Do not use the GET method for any

request that triggers a state change. Phase: Implementation Check the HTTP Referer

header to see if the request originated from an expected page. This could break

legitimate functionality, because users or proxies may have disabled sending the

Referer for privacy reasons.

Other Information

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/xss_d/?default
http://192.168.1.47/vulnerabilities/exec/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 11

Tel: +1 (415) 340-8020

Reference
http://projects.webappsec.org/Cross-Site-Request-Forgery

http://cwe.mitre.org/data/definitions/352.html

High(83) - GDPR/CCPA: Potential exposure of personal identification data (first name and
last name)

Description Phrases that are similar to first name and last name were found on public pages

Instances 83

URL / Method

 GET http://192.168.1.47/phpinfo.php

 GET http://192.168.1.47/instructions.php?doc=readme

 GET http://192.168.1.47/phpinfo.php

Out of 83 instances

Solution Review and remove potentially exposed personal information.

Other Information

Max Per, Read Me, Daniel R, Jani Taskinen, Libby XML, David Soria, Jerome Loyet,

Alain Joye, Peter Cowburn, Pierre Alain, Cross Site, Andrei Zmievski, Lynne Pspell,

Antoni Pamies, Johannes Schlüter, Vlad Krupin, Tue May, Nikita Popov, Trace Support,

Justin Erenkrantz, Lukas Kahwe, Jason Greene, George Wang, Mac OS, Kristian

Koehntopp, Alex Plotnick, Sommer Nielsen, Andi Gutmans, Derick Rethans, Sterling

Hughes, Bob Weinand, Andrew Skalski, Boris Lytochkin, Joye XSL, Adam Harvey, Rob

Richards, Dan Libby, Ilia Alshanetsky, Stanislav Malyshev, Stig Venaas, Thiago

Henrique, Hui Embed, Kalle Sommer, Read Support, Harvey Editor, Henrique Pojda,

Core PHP, Brad Dewar, Levi Morrison, Rui Hirokawa, Shane Caraveo, Hui OpenSSL,

Ferenc Kovacs, Arnaud Le, Johannes Schlueter, Michael Wallner, Ulf Wendel, Sara

Golemon, Christian Cartus, Nick Helm, Tom May, Marcus Boerger, Scott MacVicar, May

System, Max Requests, Gregory Beaver, Alex Schoenmaker, Dmitry Stogov, Wendel

MySQLnd, Hartmut Holzgraefe

Reference

High(3) - GDPR/CCPA: Potential exposure of external e-mail adresses

Description E-mail addresses in external domains were found on public pages

Instances 3

URL / Method

 GET http://192.168.1.47/phpinfo.php

 GET http://192.168.1.47/about.php

 GET http://192.168.1.47/about.php

Solution Review and remove e-mail addresses that should not be presented to public

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://cwe.mitre.org/data/definitions/352.html
http://192.168.1.47/phpinfo.php
http://192.168.1.47/instructions.php?doc=readme
http://192.168.1.47/phpinfo.php
http://192.168.1.47/phpinfo.php
http://192.168.1.47/about.php
http://192.168.1.47/about.php

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 12

Tel: +1 (415) 340-8020

Other Information license@php.net, contact@scanrepeat.com, team@scanrepeat.com

Reference

High(4) - Cross Site Scripting (Reflected)

Description

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied

code into a user's browser instance. A browser instance can be a standard web browser

client, or a browser object embedded in a software product such as the browser within

WinAmp, an RSS reader, or an email client. The code itself is usually written in HTML

/JavaScript, but may also extend to VBScript, ActiveX, Java, Flash, or any other

browser-supported technology. When an attacker gets a user's browser to execute his

/her code, the code will run within the security context (or zone) of the hosting web site.

With this level of privilege, the code has the ability to read, modify and transmit any

sensitive data accessible by the browser. A Cross-site Scripted user could have his/her

account hijacked (cookie theft), their browser redirected to another location, or possibly

shown fraudulent content delivered by the web site they are visiting. Cross-site Scripting

attacks essentially compromise the trust relationship between a user and the web site.

Applications utilizing browser object instances which load content from the file system

may execute code under the local machine zone allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and

DOM-based. Non-persistent attacks and DOM-based attacks require a user to either

visit a specially crafted link laced with malicious code, or visit a malicious web page

containing a web form, which when posted to the vulnerable site, will mount the attack.

Using a malicious form will oftentimes take place when the vulnerable resource only

accepts HTTP POST requests. In such a case, the form can be submitted automatically,

without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get

interpreted by the user's browser and execute. Another technique to send almost

arbitrary requests (GET and POST) is by using an embedded client, such as Adobe

Flash. Persistent attacks occur when the malicious code is submitted to a web site

where it's stored for a period of time. Examples of an attacker's favorite targets often

include message board posts, web mail messages, and web chat software. The

unsuspecting user is not required to interact with any additional site/link (e.g. an attacker

site or a malicious link sent via email), just simply view the web page containing the

code.

Instances 4

URL / Method

 POST http://192.168.1.47/vulnerabilities/xss_s/

 POST http://192.168.1.47/vulnerabilities/csp/

 POST http://192.168.1.47/vulnerabilities/xss_s/

Out of 4 instances

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/xss_s/
http://192.168.1.47/vulnerabilities/csp/
http://192.168.1.47/vulnerabilities/xss_s/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 13

Tel: +1 (415) 340-8020

Solution

Phase: Architecture and Design Use a vetted library or framework that does not allow

this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded

output include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and

Apache Wicket. Phases: Implementation; Architecture and Design Understand the

context in which your data will be used and the encoding that will be expected. This is

especially important when transmitting data between different components, or when

generating outputs that can contain multiple encodings at the same time, such as web

pages or multi-part mail messages. Study all expected communication protocols and

data representations to determine the required encoding strategies. For any data that

will be output to another web page, especially any data that was received from external

inputs, use the appropriate encoding on all non-alphanumeric characters. Consult the

XSS Prevention Cheat Sheet for more details on the types of encoding and escaping

that are needed. Phase: Architecture and Design For any security checks that are

performed on the client side, ensure that these checks are duplicated on the server side,

in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying

values after the checks have been performed, or by changing the client to remove the

client-side checks entirely. Then, these modified values would be submitted to the

server. If available, use structured mechanisms that automatically enforce the

separation between data and code. These mechanisms may be able to provide the

relevant quoting, encoding, and validation automatically, instead of relying on the

developer to provide this capability at every point where output is generated. Phase:

Implementation For every web page that is generated, use and specify a character

encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified, the web

browser may choose a different encoding by guessing which encoding is actually being

used by the web page. This can cause the web browser to treat certain sequences as

special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations

related to encoding/escaping. To help mitigate XSS attacks against the user's session

cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly

feature (such as more recent versions of Internet Explorer and Firefox), this attribute can

prevent the user's session cookie from being accessible to malicious client-side scripts

that use document.cookie. This is not a complete solution, since HttpOnly is not

supported by all browsers. More importantly, XMLHTTPRequest and other powerful

browser technologies provide read access to HTTP headers, including the Set-Cookie

header in which the HttpOnly flag is set. Assume all input is malicious. Use an "accept

known good" input validation strategy, i.e., use a whitelist of acceptable inputs that

strictly conform to specifications. Reject any input that does not strictly conform to

specifications, or transform it into something that does. Do not rely exclusively on

looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However,

blacklists can be useful for detecting potential attacks or determining which inputs are so

malformed that they should be rejected outright. When performing input validation,

consider all potentially relevant properties, including length, type of input, the full range

of acceptable values, missing or extra inputs, syntax, consistency across related fields,

and conformance to business rules. As an example of business rule logic, "boat" may be

syntactically valid because it only contains alphanumeric characters, but it is not valid if

you are expecting colors such as "red" or "blue." Ensure that you perform input

validation at well-defined interfaces within the application. This will help protect the

application even if a component is reused or moved elsewhere.

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 14

Tel: +1 (415) 340-8020

Other Information alert(1);, javascript:alert(1);

Reference
http://projects.webappsec.org/Cross-Site-Scripting

http://cwe.mitre.org/data/definitions/79.html

High(3) - Remote OS Command Injection

Description

Attack technique used for unauthorized execution of operating system commands. This

attack is possible when an application accepts untrusted input to build operating system

commands in an insecure manner involving improper data sanitization, and/or improper

calling of external programs.

Instances 3

URL / Method

 POST http://192.168.1.47/vulnerabilities/captcha/

 POST http://192.168.1.47/vulnerabilities/exec/

 GET http://192.168.1.47/vulnerabilities/javascript/?query=query%7Ctimeout+%2FT+15

If at all possible, use library calls rather than external processes to recreate the desired

functionality. Run your code in a "jail" or similar sandbox environment that enforces strict

boundaries between the process and the operating system. This may effectively restrict

which files can be accessed in a particular directory or which commands can be

executed by your software. OS-level examples include the Unix chroot jail, AppArmor,

and SELinux. In general, managed code may provide some protection. For example,

java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on

file operations. This may not be a feasible solution, and it only limits the impact to the

operating system; the rest of your application may still be subject to compromise. For

any data that will be used to generate a command to be executed, keep as much of that

data out of external control as possible. For example, in web applications, this may

require storing the command locally in the session's state instead of sending it out to the

client in a hidden form field. Use a vetted library or framework that does not allow this

weakness to occur or provides constructs that make this weakness easier to avoid. For

example, consider using the ESAPI Encoding control or a similar tool, library, or

framework. These will help the programmer encode outputs in a manner less prone to

error. If you need to use dynamically-generated query strings or commands in spite of

the risk, properly quote arguments and escape any special characters within those

arguments. The most conservative approach is to escape or filter all characters that do

not pass an extremely strict whitelist (such as everything that is not alphanumeric or

white space). If some special characters are still needed, such as white space, wrap

each argument in quotes after the escaping/filtering step. Be careful of argument

injection. If the program to be executed allows arguments to be specified within an input

file or from standard input, then consider using that mode to pass arguments instead of

the command line. If available, use structured mechanisms that automatically enforce

the separation between data and code. These mechanisms may be able to provide the

relevant quoting, encoding, and validation automatically, instead of relying on the

developer to provide this capability at every point where output is generated. Some

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://projects.webappsec.org/Cross-Site-Scripting
http://cwe.mitre.org/data/definitions/79.html
http://192.168.1.47/vulnerabilities/captcha/
http://192.168.1.47/vulnerabilities/exec/
http://192.168.1.47/vulnerabilities/javascript/?query=query%7Ctimeout+%2FT+15

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 15

Tel: +1 (415) 340-8020

Solution

languages offer multiple functions that can be used to invoke commands. Where

possible, identify any function that invokes a command shell using a single string, and

replace it with a function that requires individual arguments. These functions typically

perform appropriate quoting and filtering of arguments. For example, in C, the system()

function accepts a string that contains the entire command to be executed, whereas

execl(), execve(), and others require an array of strings, one for each argument. In

Windows, CreateProcess() only accepts one command at a time. In Perl, if system() is

provided with an array of arguments, then it will quote each of the arguments. Assume

all input is malicious. Use an "accept known good" input validation strategy, i.e., use a

whitelist of acceptable inputs that strictly conform to specifications. Reject any input that

does not strictly conform to specifications, or transform it into something that does. Do

not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a

blacklist). However, blacklists can be useful for detecting potential attacks or

determining which inputs are so malformed that they should be rejected outright. When

performing input validation, consider all potentially relevant properties, including length,

type of input, the full range of acceptable values, missing or extra inputs, syntax,

consistency across related fields, and conformance to business rules. As an example of

business rule logic, "boat" may be syntactically valid because it only contains

alphanumeric characters, but it is not valid if you are expecting colors such as "red" or

"blue." When constructing OS command strings, use stringent whitelists that limit the

character set based on the expected value of the parameter in the request. This will

indirectly limit the scope of an attack, but this technique is less important than proper

output encoding and escaping. Note that proper output encoding, escaping, and quoting

is the most effective solution for preventing OS command injection, although input

validation may provide some defense-in-depth. This is because it effectively limits what

will appear in output. Input validation will not always prevent OS command injection,

especially if you are required to support free-form text fields that could contain arbitrary

characters. For example, when invoking a mail program, you might need to allow the

subject field to contain otherwise-dangerous inputs like ";" and ">" characters, which

would need to be escaped or otherwise handled. In this case, stripping the character

might reduce the risk of OS command injection, but it would produce incorrect behavior

because the subject field would not be recorded as the user intended. This might seem

to be a minor inconvenience, but it could be more important when the program relies on

well-structured subject lines in order to pass messages to other components. Even if

you make a mistake in your validation (such as forgetting one out of 100 input fields),

appropriate encoding is still likely to protect you from injection-based attacks. As long as

it is not done in isolation, input validation is still a useful technique, since it may

significantly reduce your attack surface, allow you to detect some attacks, and provide

other security benefits that proper encoding does not address.

Other Information

Reference
http://cwe.mitre.org/data/definitions/78.html

https://owasp.org/www-community/attacks/Command_Injection

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://cwe.mitre.org/data/definitions/78.html
https://owasp.org/www-community/attacks/Command_Injection

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 16

Tel: +1 (415) 340-8020

High(5) - SQL Injection

Description SQL injection may be possible.

Instances 5

URL / Method

 POST http://192.168.1.47/vulnerabilities/xss_s/

 POST http://192.168.1.47/vulnerabilities/upload/

 POST http://192.168.1.47/vulnerabilities/xss_s/?query=query+AND+1%3D1

Out of 5 instances

Solution

Do not trust client side input, even if there is client side validation in place. In general,

type check all data on the server side. If the application uses JDBC, use

PreparedStatement or CallableStatement, with parameters passed by '?' If the

application uses ASP, use ADO Command Objects with strong type checking and

parameterized queries. If database Stored Procedures can be used, use them. Do *not*

concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate',

or equivalent functionality! Do not create dynamic SQL queries using simple string

concatenation. Escape all data received from the client. Apply a 'whitelist' of allowed

characters, or a 'blacklist' of disallowed characters in user input. Apply the principle of

least privilege by using the least privileged database user possible. In particular, avoid

using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but

minimizes its impact. Grant the minimum database access that is necessary for the

application.

Other Information

The page results were successfully manipulated using the boolean conditions [ZAP

AND 1=1] and [ZAP AND 1=2] The parameter value being modified was stripped from

the HTML output for the purposes of the comparison Data was returned for the original

parameter. The vulnerability was detected by successfully restricting the data originally

returned, by manipulating the parameter

Reference
https://cheatsheetseries.owasp.org/cheatsheets

/SQL_Injection_Prevention_Cheat_Sheet.html

High(2) - PII Disclosure

Description
The response contains Personally Identifiable Information, such as CC number, SSN

and similar sensitive data.

Instances 2

URL / Method
 GET http://192.168.1.47/about.php

 GET http://192.168.1.47/about.php

Solution

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/xss_s/
http://192.168.1.47/vulnerabilities/upload/
http://192.168.1.47/vulnerabilities/xss_s/?query=query+AND+1%3D1
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
http://192.168.1.47/about.php
http://192.168.1.47/about.php

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 17

Tel: +1 (415) 340-8020

Other Information
Credit Card Type detected: Visa Bank Identification Number: 400000 Brand: VISA

Category: Issuer:

Reference

High(5) - Cross Site Scripting (DOM Based)

Description

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied

code into a user's browser instance. A browser instance can be a standard web browser

client, or a browser object embedded in a software product such as the browser within

WinAmp, an RSS reader, or an email client. The code itself is usually written in HTML

/JavaScript, but may also extend to VBScript, ActiveX, Java, Flash, or any other

browser-supported technology. When an attacker gets a user's browser to execute his

/her code, the code will run within the security context (or zone) of the hosting web site.

With this level of privilege, the code has the ability to read, modify and transmit any

sensitive data accessible by the browser. A Cross-site Scripted user could have his/her

account hijacked (cookie theft), their browser redirected to another location, or possibly

shown fraudulent content delivered by the web site they are visiting. Cross-site Scripting

attacks essentially compromise the trust relationship between a user and the web site.

Applications utilizing browser object instances which load content from the file system

may execute code under the local machine zone allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and

DOM-based. Non-persistent attacks and DOM-based attacks require a user to either

visit a specially crafted link laced with malicious code, or visit a malicious web page

containing a web form, which when posted to the vulnerable site, will mount the attack.

Using a malicious form will oftentimes take place when the vulnerable resource only

accepts HTTP POST requests. In such a case, the form can be submitted automatically,

without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get

interpreted by the user's browser and execute. Another technique to send almost

arbitrary requests (GET and POST) is by using an embedded client, such as Adobe

Flash. Persistent attacks occur when the malicious code is submitted to a web site

where it's stored for a period of time. Examples of an attacker's favorite targets often

include message board posts, web mail messages, and web chat software. The

unsuspecting user is not required to interact with any additional site/link (e.g. an attacker

site or a malicious link sent via email), just simply view the web page containing the

code.

Instances 5

URL / Method

 GET http://192.168.1.47/vulnerabilities/xss_d/?default#alert(1)

 GET http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* *

/oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e

 POST http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* *

/oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e

Out of 5 instances

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/xss_d/?default#alert(1)
http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* */oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e
http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* */oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e
http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* */oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e
http://192.168.1.47/vulnerabilities/xss_s/#jaVasCript:/*-/*`/*\`/*'/*"/**/(/* */oNcliCk=alert())//%0D%0A%0d%0a//\x3csVg/\x3e

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 18

Tel: +1 (415) 340-8020

Solution

Phase: Architecture and Design Use a vetted library or framework that does not allow

this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded

output include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and

Apache Wicket. Phases: Implementation; Architecture and Design Understand the

context in which your data will be used and the encoding that will be expected. This is

especially important when transmitting data between different components, or when

generating outputs that can contain multiple encodings at the same time, such as web

pages or multi-part mail messages. Study all expected communication protocols and

data representations to determine the required encoding strategies. For any data that

will be output to another web page, especially any data that was received from external

inputs, use the appropriate encoding on all non-alphanumeric characters. Consult the

XSS Prevention Cheat Sheet for more details on the types of encoding and escaping

that are needed. Phase: Architecture and Design For any security checks that are

performed on the client side, ensure that these checks are duplicated on the server side,

in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying

values after the checks have been performed, or by changing the client to remove the

client-side checks entirely. Then, these modified values would be submitted to the

server. If available, use structured mechanisms that automatically enforce the

separation between data and code. These mechanisms may be able to provide the

relevant quoting, encoding, and validation automatically, instead of relying on the

developer to provide this capability at every point where output is generated. Phase:

Implementation For every web page that is generated, use and specify a character

encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified, the web

browser may choose a different encoding by guessing which encoding is actually being

used by the web page. This can cause the web browser to treat certain sequences as

special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations

related to encoding/escaping. To help mitigate XSS attacks against the user's session

cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly

feature (such as more recent versions of Internet Explorer and Firefox), this attribute can

prevent the user's session cookie from being accessible to malicious client-side scripts

that use document.cookie. This is not a complete solution, since HttpOnly is not

supported by all browsers. More importantly, XMLHTTPRequest and other powerful

browser technologies provide read access to HTTP headers, including the Set-Cookie

header in which the HttpOnly flag is set. Assume all input is malicious. Use an "accept

known good" input validation strategy, i.e., use a whitelist of acceptable inputs that

strictly conform to specifications. Reject any input that does not strictly conform to

specifications, or transform it into something that does. Do not rely exclusively on

looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However,

blacklists can be useful for detecting potential attacks or determining which inputs are so

malformed that they should be rejected outright. When performing input validation,

consider all potentially relevant properties, including length, type of input, the full range

of acceptable values, missing or extra inputs, syntax, consistency across related fields,

and conformance to business rules. As an example of business rule logic, "boat" may be

syntactically valid because it only contains alphanumeric characters, but it is not valid if

you are expecting colors such as "red" or "blue." Ensure that you perform input

validation at well-defined interfaces within the application. This will help protect the

application even if a component is reused or moved elsewhere.

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 19

Tel: +1 (415) 340-8020

Other Information Tag name: input Att name: Att id:

Reference
http://projects.webappsec.org/Cross-Site-Scripting

http://cwe.mitre.org/data/definitions/79.html

High(2) - Cross Site Scripting (Reflected)

Description

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied

code into a user's browser instance. A browser instance can be a standard web browser

client, or a browser object embedded in a software product such as the browser within

WinAmp, an RSS reader, or an email client. The code itself is usually written in HTML

/JavaScript, but may also extend to VBScript, ActiveX, Java, Flash, or any other

browser-supported technology. When an attacker gets a user's browser to execute his

/her code, the code will run within the security context (or zone) of the hosting web site.

With this level of privilege, the code has the ability to read, modify and transmit any

sensitive data accessible by the browser. A Cross-site Scripted user could have his/her

account hijacked (cookie theft), their browser redirected to another location, or possibly

shown fraudulent content delivered by the web site they are visiting. Cross-site Scripting

attacks essentially compromise the trust relationship between a user and the web site.

Applications utilizing browser object instances which load content from the file system

may execute code under the local machine zone allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and

DOM-based. Non-persistent attacks and DOM-based attacks require a user to either

visit a specially crafted link laced with malicious code, or visit a malicious web page

containing a web form, which when posted to the vulnerable site, will mount the attack.

Using a malicious form will oftentimes take place when the vulnerable resource only

accepts HTTP POST requests. In such a case, the form can be submitted automatically,

without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get

interpreted by the user's browser and execute. Another technique to send almost

arbitrary requests (GET and POST) is by using an embedded client, such as Adobe

Flash. Persistent attacks occur when the malicious code is submitted to a web site

where it's stored for a period of time. Examples of an attacker's favorite targets often

include message board posts, web mail messages, and web chat software. The

unsuspecting user is not required to interact with any additional site/link (e.g. an attacker

site or a malicious link sent via email), just simply view the web page containing the

code.

Instances 2

URL / Method

 GET http://192.168.1.47/vulnerabilities/brute/?

Login=Login&password=ZAP&username=%27%22%3Cscript%3Ealert%281%29%3B%

3C%2Fscript%3E

 GET http://192.168.1.47/vulnerabilities/sqli/?Submit=Submit&id=%27%22%3Cscript%

3Ealert%281%29%3B%3C%2Fscript%3E

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://projects.webappsec.org/Cross-Site-Scripting
http://cwe.mitre.org/data/definitions/79.html
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://192.168.1.47/vulnerabilities/sqli/?Submit=Submit&id=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E
http://192.168.1.47/vulnerabilities/sqli/?Submit=Submit&id=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 20

Tel: +1 (415) 340-8020

Solution

Phase: Architecture and Design Use a vetted library or framework that does not allow

this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded

output include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and

Apache Wicket. Phases: Implementation; Architecture and Design Understand the

context in which your data will be used and the encoding that will be expected. This is

especially important when transmitting data between different components, or when

generating outputs that can contain multiple encodings at the same time, such as web

pages or multi-part mail messages. Study all expected communication protocols and

data representations to determine the required encoding strategies. For any data that

will be output to another web page, especially any data that was received from external

inputs, use the appropriate encoding on all non-alphanumeric characters. Consult the

XSS Prevention Cheat Sheet for more details on the types of encoding and escaping

that are needed. Phase: Architecture and Design For any security checks that are

performed on the client side, ensure that these checks are duplicated on the server side,

in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying

values after the checks have been performed, or by changing the client to remove the

client-side checks entirely. Then, these modified values would be submitted to the

server. If available, use structured mechanisms that automatically enforce the

separation between data and code. These mechanisms may be able to provide the

relevant quoting, encoding, and validation automatically, instead of relying on the

developer to provide this capability at every point where output is generated. Phase:

Implementation For every web page that is generated, use and specify a character

encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified, the web

browser may choose a different encoding by guessing which encoding is actually being

used by the web page. This can cause the web browser to treat certain sequences as

special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations

related to encoding/escaping. To help mitigate XSS attacks against the user's session

cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly

feature (such as more recent versions of Internet Explorer and Firefox), this attribute can

prevent the user's session cookie from being accessible to malicious client-side scripts

that use document.cookie. This is not a complete solution, since HttpOnly is not

supported by all browsers. More importantly, XMLHTTPRequest and other powerful

browser technologies provide read access to HTTP headers, including the Set-Cookie

header in which the HttpOnly flag is set. Assume all input is malicious. Use an "accept

known good" input validation strategy, i.e., use a whitelist of acceptable inputs that

strictly conform to specifications. Reject any input that does not strictly conform to

specifications, or transform it into something that does. Do not rely exclusively on

looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However,

blacklists can be useful for detecting potential attacks or determining which inputs are so

malformed that they should be rejected outright. When performing input validation,

consider all potentially relevant properties, including length, type of input, the full range

of acceptable values, missing or extra inputs, syntax, consistency across related fields,

and conformance to business rules. As an example of business rule logic, "boat" may be

syntactically valid because it only contains alphanumeric characters, but it is not valid if

you are expecting colors such as "red" or "blue." Ensure that you perform input

validation at well-defined interfaces within the application. This will help protect the

application even if a component is reused or moved elsewhere.

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 21

Tel: +1 (415) 340-8020

Other Information '"alert(1);

Reference
http://projects.webappsec.org/Cross-Site-Scripting

http://cwe.mitre.org/data/definitions/79.html

High(1) - Path Traversal

Description

The Path Traversal attack technique allows an attacker access to files, directories, and

commands that potentially reside outside the web document root directory. An attacker

may manipulate a URL in such a way that the web site will execute or reveal the

contents of arbitrary files anywhere on the web server. Any device that exposes an

HTTP-based interface is potentially vulnerable to Path Traversal. Most web sites restrict

user access to a specific portion of the file-system, typically called the "web document

root" or "CGI root" directory. These directories contain the files intended for user access

and the executable necessary to drive web application functionality. To access files or

execute commands anywhere on the file-system, Path Traversal attacks will utilize the

ability of special-characters sequences. The most basic Path Traversal attack uses the

"../" special-character sequence to alter the resource location requested in the URL.

Although most popular web servers will prevent this technique from escaping the web

document root, alternate encodings of the "../" sequence may help bypass the security

filters. These method variations include valid and invalid Unicode-encoding ("..%u2216"

or "..%c0%af") of the forward slash character, backslash characters ("..\") on Windows-

based servers, URL encoded characters "%2e%2e%2f"), and double URL encoding

("..%255c") of the backslash character. Even if the web server properly restricts Path

Traversal attempts in the URL path, a web application itself may still be vulnerable due

to improper handling of user-supplied input. This is a common problem of web

applications that use template mechanisms or load static text from files. In variations of

the attack, the original URL parameter value is substituted with the file name of one of

the web application's dynamic scripts. Consequently, the results can reveal source code

because the file is interpreted as text instead of an executable script. These techniques

often employ additional special characters such as the dot (".") to reveal the listing of the

current working directory, or "%00" NULL characters in order to bypass rudimentary file

extension checks.

Instances 1

URL / Method GET http://192.168.1.47/vulnerabilities/fi/?page=%2Fetc%2Fpasswd

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://projects.webappsec.org/Cross-Site-Scripting
http://cwe.mitre.org/data/definitions/79.html
http://192.168.1.47/vulnerabilities/fi/?page=%2Fetc%2Fpasswd

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 22

Tel: +1 (415) 340-8020

Solution

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e.,

use a whitelist of acceptable inputs that strictly conform to specifications. Reject any

input that does not strictly conform to specifications, or transform it into something that

does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not

rely on a blacklist). However, blacklists can be useful for detecting potential attacks or

determining which inputs are so malformed that they should be rejected outright. When

performing input validation, consider all potentially relevant properties, including length,

type of input, the full range of acceptable values, missing or extra inputs, syntax,

consistency across related fields, and conformance to business rules. As an example of

business rule logic, "boat" may be syntactically valid because it only contains

alphanumeric characters, but it is not valid if you are expecting colors such as "red" or

"blue." For filenames, use stringent whitelists that limit the character set to be used. If

feasible, only allow a single "." character in the filename to avoid weaknesses, and

exclude directory separators such as "/". Use a whitelist of allowable file extensions.

Warning: if you attempt to cleanse your data, then do so that the end result is not in the

form that can be dangerous. A sanitizing mechanism can remove characters such as '.'

and ';' which may be required for some exploits. An attacker can try to fool the sanitizing

mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a '.'

inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the

character resulting in the valid filename, "sensitiveFile". If the input data are now

assumed to be safe, then the file may be compromised. Inputs should be decoded and

canonicalized to the application's current internal representation before being validated.

Make sure that your application does not decode the same input twice. Such errors

could be used to bypass whitelist schemes by introducing dangerous inputs after they

have been checked. Use a built-in path canonicalization function (such as realpath() in

C) that produces the canonical version of the pathname, which effectively removes ".."

sequences and symbolic links. Run your code using the lowest privileges that are

required to accomplish the necessary tasks. If possible, create isolated accounts with

limited privileges that are only used for a single task. That way, a successful attack will

not immediately give the attacker access to the rest of the software or its environment.

For example, database applications rarely need to run as the database administrator,

especially in day-to-day operations. When the set of acceptable objects, such as

filenames or URLs, is limited or known, create a mapping from a set of fixed input

values (such as numeric IDs) to the actual filenames or URLs, and reject all other

inputs. Run your code in a "jail" or similar sandbox environment that enforces strict

boundaries between the process and the operating system. This may effectively restrict

which files can be accessed in a particular directory or which commands can be

executed by your software. OS-level examples include the Unix chroot jail, AppArmor,

and SELinux. In general, managed code may provide some protection. For example,

java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on

file operations. This may not be a feasible solution, and it only limits the impact to the

operating system; the rest of your application may still be subject to compromise.

Other Information root:x:0:0

Reference
http://projects.webappsec.org/Path-Traversal

http://cwe.mitre.org/data/definitions/22.html

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://projects.webappsec.org/Path-Traversal
http://cwe.mitre.org/data/definitions/22.html

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 23

Tel: +1 (415) 340-8020

High(1) - GDPR/CCPA: Possible detection of exposed France IBAN Bank Account number

Description France Iban number was found

Instances 1

URL / Method GET http://192.168.1.47/about.php

Solution Review and remove wrongly exposed IBAN Bank Account numbers

Other Information FR76 3000 6000 0112 3456 7890 189

Reference

High(1) - GDPR/CCPA: Possible detection of exposed Germany IBAN Bank Account number

Description Germany Iban number was found

Instances 1

URL / Method GET http://192.168.1.47/about.php

Solution Review and remove wrongly exposed IBAN Bank Account numbers

Other Information DE91 1000 0000 0123 4567 89

Reference

Medium(1) - HTTP Only Site

Description The site is only served under HTTP and not HTTPS.

Instances 1

URL / Method GET http://192.168.1.47/

Solution Configure your web or application server to use SSL (https).

Other Information Failed to connect. ZAP attempted to connect via: https://192.168.1.47:443/

Reference

https://cheatsheetseries.owasp.org/cheatsheets

/Transport_Layer_Protection_Cheat_Sheet.html

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/about.php
http://192.168.1.47/about.php
http://192.168.1.47/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 24

Tel: +1 (415) 340-8020

https://letsencrypt.org/

Medium(37) - Reverse Tabnabbing

Description

At least one link on this page is vulnerable to Reverse tabnabbing as it uses a target

attribute without using both of the "noopener" and "noreferrer" keywords in the "rel"

attribute, which allows the target page to take control of this page.

Instances 37

URL / Method

 GET http://192.168.1.47/instructions.php?doc=readme

 GET http://192.168.1.47/vulnerabilities/brute/

 GET http://192.168.1.47/vulnerabilities/fi/?page=file3.php

Out of 37 instances

Solution
Do not use a target attribute, or if you have to then also add the attribute: rel="noopener

noreferrer".

Other Information

https://www.virtualbox.org/, https://www.owasp.org/index.php/Testing_for_Brute_Force_

(OWASP-AT-004), https://en.wikipedia.org/wiki/Remote_File_Inclusion, https://www.

owasp.org/index.php/Cross-site_Scripting_(XSS), https://www.owasp.org/index.php

/Unrestricted_File_Upload, http://fsf.org/, http://hiderefer.com, Damn Vulnerable Web

Application (DVWA), https://www.owasp.org/index.php/Cross-Site_Request_Forgery,

http://www.securiteam.com/securityreviews/5DP0N1P76E.html, http://www.scribd.com

/doc/2530476/Php-Endangers-Remote-Code-Execution, Content Security Policy

Reference, https://www.w3schools.com/js/, https://www.google.com/recaptcha/admin

/create, PHPIDS, http://www.dvwa.co.uk/, VirtualBox

Reference

https://owasp.org/www-community/attacks/Reverse_Tabnabbing

https://dev.to/ben/the-targetblank-vulnerability-by-example

https://mathiasbynens.github.io/rel-noopener/

https://medium.com/@jitbit/target-blank-the-most-underestimated-vulnerability-ever-

96e328301f4c

Medium(10) - Relative Path Confusion

Description

The web server is configured to serve responses to ambiguous URLs in a manner that

is likely to lead to confusion about the correct "relative path" for the URL. Resources

(CSS, images, etc.) are also specified in the page response using relative, rather than

absolute URLs. In an attack, if the web browser parses the "cross-content" response in

a permissive manner, or can be tricked into permissively parsing the "cross-content"

response, using techniques such as framing, then the web browser may be fooled into

interpreting HTML as CSS (or other content types), leading to an XSS vulnerability.

Instances 10

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://letsencrypt.org/
http://192.168.1.47/instructions.php?doc=readme
http://192.168.1.47/vulnerabilities/brute/
http://192.168.1.47/vulnerabilities/fi/?page=file3.php
https://owasp.org/www-community/attacks/Reverse_Tabnabbing
https://dev.to/ben/the-targetblank-vulnerability-by-example
https://mathiasbynens.github.io/rel-noopener/
https://medium.com/@jitbit/target-blank-the-most-underestimated-vulnerability-ever-96e328301f4c
https://medium.com/@jitbit/target-blank-the-most-underestimated-vulnerability-ever-96e328301f4c

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 25

Tel: +1 (415) 340-8020

URL / Method

 GET http://192.168.1.47/login.php

 GET http://192.168.1.47/instructions.php?doc=PHPIDS-license

 GET http://192.168.1.47/security.php?phpids=on

Out of 10 instances

Solution

Web servers and frameworks should be updated to be configured to not serve

responses to ambiguous URLs in such a way that the relative path of such URLs could

be mis-interpreted by components on either the client side, or server side. Within the

application, the correct use of the "" HTML tag in the HTTP response will unambiguously

specify the base URL for all relative URLs in the document. Use the "Content-Type"

HTTP response header to make it harder for the attacker to force the web browser to

mis-interpret the content type of the response. Use the "X-Content-Type-Options:

nosniff" HTTP response header to prevent the web browser from "sniffing" the content

type of the response. Use a modern DOCTYPE such as "" to prevent the page from

being rendered in the web browser using "Quirks Mode", since this results in the content

type being ignored by the web browser. Specify the "X-Frame-Options" HTTP response

header to prevent Quirks Mode from being enabled in the web browser using framing

attacks.

Other Information

No tag was specified in the HTML tag to define the location for relative URLs. A Content

Type of "text/html;charset=utf-8" was specified. If the web browser is employing strict

parsing rules, this will prevent cross-content attacks from succeeding. Quirks Mode in

the web browser would disable strict parsing. Quirks Mode is implicitly enabled via the

use of an old DOCTYPE with PUBLIC id "-//W3C//DTD XHTML 1.0 Strict//EN", allowing

the specified Content Type to be bypassed in some web browsers.

Reference

http://www.thespanner.co.uk/2014/03/21/rpo/

https://hsivonen.fi/doctype/

http://www.w3schools.com/tags/tag_base.asp

Medium(2) - CSP Scanner: Wildcard Directive

Description

The following directives either allow wildcard sources (or ancestors), are not defined, or

are overly broadly defined: style-src, style-src-elem, style-src-attr, img-src, connect-src,

frame-src, frame-ancestors, font-src, media-src, object-src, manifest-src, prefetch-src

Instances 2

URL / Method
 GET http://192.168.1.47/vulnerabilities/csp/

 POST http://192.168.1.47/vulnerabilities/csp/

Solution
Ensure that your web server, application server, load balancer, etc. is properly

configured to set the Content-Security-Policy header.

Other Information
script-src 'self' https://pastebin.com example.com code.jquery.com https://ssl.google-

analytics.com ;

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/login.php
http://192.168.1.47/instructions.php?doc=PHPIDS-license
http://192.168.1.47/security.php?phpids=on
http://www.thespanner.co.uk/2014/03/21/rpo/
https://hsivonen.fi/doctype/
http://www.w3schools.com/tags/tag_base.asp
http://192.168.1.47/vulnerabilities/csp/
http://192.168.1.47/vulnerabilities/csp/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 26

Tel: +1 (415) 340-8020

Reference

http://www.w3.org/TR/CSP2/

http://www.w3.org/TR/CSP/

http://caniuse.com/#search=content+security+policy

http://content-security-policy.com/

https://github.com/shapesecurity/salvation

Medium(43) - X-Frame-Options Header Not Set

Description
X-Frame-Options header is not included in the HTTP response to protect against

'ClickJacking' attacks.

Instances 43

URL / Method

 GET http://192.168.1.47/vulnerabilities/csrf/?

Change=Change&password_conf=ZAP&password_new=ZAP

 GET http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP

 GET http://192.168.1.47/instructions.php?doc=copying

Out of 43 instances

Solution

Most modern Web browsers support the X-Frame-Options HTTP header. Ensure it's set

on all web pages returned by your site (if you expect the page to be framed only by

pages on your server (e.g. it's part of a FRAMESET) then you'll want to use

SAMEORIGIN, otherwise if you never expect the page to be framed, you should use

DENY. ALLOW-FROM allows specific websites to frame the web page in supported web

browsers).

Other Information

Reference https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

Medium(6) - Directory Browsing

Description

It is possible to view the directory listing. Directory listing may reveal hidden scripts,

include files, backup source files, etc. which can be accessed to read sensitive

information.

Instances 6

URL / Method

 GET http://192.168.1.47/docs/

 GET http://192.168.1.47/vulnerabilities/

 GET http://192.168.1.47/dvwa/images/

Out of 6 instances

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP/
http://caniuse.com/#search=content+security+policy
http://content-security-policy.com/
https://github.com/shapesecurity/salvation
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP
http://192.168.1.47/instructions.php?doc=copying
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
http://192.168.1.47/docs/
http://192.168.1.47/vulnerabilities/
http://192.168.1.47/dvwa/images/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 27

Tel: +1 (415) 340-8020

Solution Disable directory browsing. If this is required, make sure the listed files does not induce

risks.

Other Information

Reference
http://httpd.apache.org/docs/mod/core.html#options

http://alamo.satlug.org/pipermail/satlug/2002-February/000053.html

Low(44) - Content Security Policy (CSP) Header Not Set

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and

mitigate certain types of attacks, including Cross Site Scripting (XSS) and data injection

attacks. These attacks are used for everything from data theft to site defacement or

distribution of malware. CSP provides a set of standard HTTP headers that allow

website owners to declare approved sources of content that browsers should be allowed

to load on that page — covered types are JavaScript, CSS, HTML frames, fonts, images

and embeddable objects such as Java applets, ActiveX, audio and video files.

Instances 44

URL / Method

 GET http://192.168.1.47/vulnerabilities/xss_d/?default

 GET http://192.168.1.47/instructions.php?doc=PHPIDS-license

 GET http://192.168.1.47/setup.php

Out of 44 instances

Solution

Ensure that your web server, application server, load balancer, etc. is configured to set

the Content-Security-Policy header, to achieve optimal browser support: "Content-

Security-Policy" for Chrome 25+, Firefox 23+ and Safari 7+, "X-Content-Security-Policy"

for Firefox 4.0+ and Internet Explorer 10+, and "X-WebKit-CSP" for Chrome 14+ and

Safari 6+.

Other Information

Reference

https://developer.mozilla.org/en-US/docs/Web/Security/CSP

/Introducing_Content_Security_Policy

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.

html

http://www.w3.org/TR/CSP/

http://w3c.github.io/webappsec/specs/content-security-policy/csp-specification.dev.html

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

http://caniuse.com/#feat=contentsecuritypolicy

http://content-security-policy.com/

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://httpd.apache.org/docs/mod/core.html#options
http://alamo.satlug.org/pipermail/satlug/2002-February/000053.html
http://192.168.1.47/vulnerabilities/xss_d/?default
http://192.168.1.47/instructions.php?doc=PHPIDS-license
http://192.168.1.47/setup.php
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
http://www.w3.org/TR/CSP/
http://w3c.github.io/webappsec/specs/content-security-policy/csp-specification.dev.html
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://caniuse.com/#feat=contentsecuritypolicy
http://content-security-policy.com/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 28

Tel: +1 (415) 340-8020

Low(64) - Server Leaks Version Information via "Server" HTTP Response Header Field

Description

The web/application server is leaking version information via the "Server" HTTP

response header. Access to such information may facilitate attackers identifying other

vulnerabilities your web/application server is subject to.

Instances 64

URL / Method

 GET http://192.168.1.47/dvwa/images/login_logo.png

 GET http://192.168.1.47/sitemap.xml

 GET http://192.168.1.47/dvwa/js/dvwaPage.js

Out of 64 instances

Solution
Ensure that your web server, application server, load balancer, etc. is configured to

suppress the "Server" header or provide generic details.

Other Information Apache/2.4.25 (Debian)

Reference

http://httpd.apache.org/docs/current/mod/core.html#servertokens

http://msdn.microsoft.com/en-us/library/ff648552.aspx#ht_urlscan_007

http://blogs.msdn.com/b/varunm/archive/2013/04/23/remove-unwanted-http-response-

headers.aspx

http://www.troyhunt.com/2012/02/shhh-dont-let-your-response-headers.html

Low(30) - Absence of Anti-CSRF Tokens

Description

No Anti-CSRF tokens were found in a HTML submission form. A cross-site request

forgery is an attack that involves forcing a victim to send an HTTP request to a target

destination without their knowledge or intent in order to perform an action as the victim.

The underlying cause is application functionality using predictable URL/form actions in a

repeatable way. The nature of the attack is that CSRF exploits the trust that a web site

has for a user. By contrast, cross-site scripting (XSS) exploits the trust that a user has

for a web site. Like XSS, CSRF attacks are not necessarily cross-site, but they can be.

Cross-site request forgery is also known as CSRF, XSRF, one-click attack, session

riding, confused deputy, and sea surf. CSRF attacks are effective in a number of

situations, including: * The victim has an active session on the target site. * The victim is

authenticated via HTTP auth on the target site. * The victim is on the same local network

as the target site. CSRF has primarily been used to perform an action against a target

site using the victim's privileges, but recent techniques have been discovered to

disclose information by gaining access to the response. The risk of information

disclosure is dramatically increased when the target site is vulnerable to XSS, because

XSS can be used as a platform for CSRF, allowing the attack to operate within the

bounds of the same-origin policy.

Instances 30

 GET http://192.168.1.47/vulnerabilities/xss_d/

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/dvwa/images/login_logo.png
http://192.168.1.47/sitemap.xml
http://192.168.1.47/dvwa/js/dvwaPage.js
http://httpd.apache.org/docs/current/mod/core.html#servertokens
http://msdn.microsoft.com/en-us/library/ff648552.aspx#ht_urlscan_007
http://blogs.msdn.com/b/varunm/archive/2013/04/23/remove-unwanted-http-response-headers.aspx
http://blogs.msdn.com/b/varunm/archive/2013/04/23/remove-unwanted-http-response-headers.aspx
http://www.troyhunt.com/2012/02/shhh-dont-let-your-response-headers.html
http://192.168.1.47/vulnerabilities/xss_d/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 29

Tel: +1 (415) 340-8020

URL / Method
 GET http://192.168.1.47/vulnerabilities/csrf/?

Change=Change&password_conf=ZAP&password_new=ZAP

 GET http://192.168.1.47/login.php

Out of 30 instances

Solution

Phase: Architecture and Design Use a vetted library or framework that does not allow

this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard. Phase:

Implementation Ensure that your application is free of cross-site scripting issues,

because most CSRF defenses can be bypassed using attacker-controlled script. Phase:

Architecture and Design Generate a unique nonce for each form, place the nonce into

the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not

predictable (CWE-330). Note that this can be bypassed using XSS. Identify especially

dangerous operations. When the user performs a dangerous operation, send a separate

confirmation request to ensure that the user intended to perform that operation. Note

that this can be bypassed using XSS. Use the ESAPI Session Management control.

This control includes a component for CSRF. Do not use the GET method for any

request that triggers a state change. Phase: Implementation Check the HTTP Referer

header to see if the request originated from an expected page. This could break

legitimate functionality, because users or proxies may have disabled sending the

Referer for privacy reasons.

Other Information

No known Anti-CSRF token [anticsrf, CSRFToken, __RequestVerificationToken,

csrfmiddlewaretoken, authenticity_token, OWASP_CSRFTOKEN, anoncsrf, csrf_token,

_csrf, _csrfSecret, uset_token, csrf, X-CSRF_TOKEN] was found in the following HTML

form: [Form 1:].

Reference
http://projects.webappsec.org/Cross-Site-Request-Forgery

http://cwe.mitre.org/data/definitions/352.html

Low(55) - X-Content-Type-Options Header Missing

Description

The Anti-MIME-Sniffing header X-Content-Type-Options was not set to 'nosniff'. This

allows older versions of Internet Explorer and Chrome to perform MIME-sniffing on the

response body, potentially causing the response body to be interpreted and displayed

as a content type other than the declared content type. Current (early 2014) and legacy

versions of Firefox will use the declared content type (if one is set), rather than

performing MIME-sniffing.

Instances 55

URL / Method

 GET http://192.168.1.47/favicon.ico

 GET http://192.168.1.47/vulnerabilities/fi/?page=file1.php

 GET http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP

Out of 55 instances

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/login.php
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://cwe.mitre.org/data/definitions/352.html
http://192.168.1.47/favicon.ico
http://192.168.1.47/vulnerabilities/fi/?page=file1.php
http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 30

Tel: +1 (415) 340-8020

Solution

Ensure that the application/web server sets the Content-Type header appropriately, and

that it sets the X-Content-Type-Options header to 'nosniff' for all web pages. If possible,

ensure that the end user uses a standards-compliant and modern web browser that

does not perform MIME-sniffing at all, or that can be directed by the web application

/web server to not perform MIME-sniffing.

Other Information

This issue still applies to error type pages (401, 403, 500, etc.) as those pages are often

still affected by injection issues, in which case there is still concern for browsers sniffing

pages away from their actual content type. At "High" threshold this scanner will not alert

on client or server error responses.

Reference
http://msdn.microsoft.com/en-us/library/ie/gg622941%28v=vs.85%29.aspx

https://owasp.org/www-community/Security_Headers

Low(2) - Cross-Domain JavaScript Source File Inclusion

Description The page includes one or more script files from a third-party domain.

Instances 2

URL / Method
 POST http://192.168.1.47/vulnerabilities/captcha/

 GET http://192.168.1.47/vulnerabilities/captcha/

Solution
Ensure JavaScript source files are loaded from only trusted sources, and the sources

can't be controlled by end users of the application.

Other Information

Reference

Low(4) - Private IP Disclosure

Description

A private IP (such as 10.x.x.x, 172.x.x.x, 192.168.x.x) or an Amazon EC2 private

hostname (for example, ip-10-0-56-78) has been found in the HTTP response body.

This information might be helpful for further attacks targeting internal systems.

Instances 4

URL / Method

 GET http://192.168.1.47/vulnerabilities/fi/?page=file3.php

 GET http://192.168.1.47/ids_log.php

 GET http://192.168.1.47/vulnerabilities/fi/?page=file1.php

Out of 4 instances

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://msdn.microsoft.com/en-us/library/ie/gg622941%28v=vs.85%29.aspx
https://owasp.org/www-community/Security_Headers
http://192.168.1.47/vulnerabilities/captcha/
http://192.168.1.47/vulnerabilities/captcha/
http://192.168.1.47/vulnerabilities/fi/?page=file3.php
http://192.168.1.47/ids_log.php
http://192.168.1.47/vulnerabilities/fi/?page=file1.php

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 31

Tel: +1 (415) 340-8020

Solution Remove the private IP address from the HTTP response body. For comments, use JSP

/ASP/PHP comment instead of HTML/JavaScript comment which can be seen by client

browsers.

Other Information 172.17.0.1

Reference https://tools.ietf.org/html/rfc1918

Low(5) - Cookie No HttpOnly Flag

Description

A cookie has been set without the HttpOnly flag, which means that the cookie can be

accessed by JavaScript. If a malicious script can be run on this page then the cookie will

be accessible and can be transmitted to another site. If this is a session cookie then

session hijacking may be possible.

Instances 5

URL / Method

 POST http://192.168.1.47/vulnerabilities/weak_id/

 POST http://192.168.1.47/security.php

 POST http://192.168.1.47/security.php

Out of 5 instances

Solution Ensure that the HttpOnly flag is set for all cookies.

Other Information Set-Cookie: dvwaSession, Set-Cookie: security, Set-Cookie: PHPSESSID

Reference https://owasp.org/www-community/HttpOnly

Low(5) - Cookie Without SameSite Attribute

Description

A cookie has been set without the SameSite attribute, which means that the cookie can

be sent as a result of a 'cross-site' request. The SameSite attribute is an effective

counter measure to cross-site request forgery, cross-site script inclusion, and timing

attacks.

Instances 5

URL / Method

 POST http://192.168.1.47/security.php

 GET http://192.168.1.47/

 POST http://192.168.1.47/vulnerabilities/weak_id/

Out of 5 instances

Solution Ensure that the SameSite attribute is set to either 'lax' or ideally 'strict' for all cookies.

Other Information Set-Cookie: security, Set-Cookie: dvwaSession, Set-Cookie: PHPSESSID

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://tools.ietf.org/html/rfc1918
http://192.168.1.47/vulnerabilities/weak_id/
http://192.168.1.47/security.php
http://192.168.1.47/security.php
https://owasp.org/www-community/HttpOnly
http://192.168.1.47/security.php
http://192.168.1.47/
http://192.168.1.47/vulnerabilities/weak_id/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 32

Tel: +1 (415) 340-8020

Reference
https://tools.ietf.org/html/draft-ietf-

httpbis-cookie-same-site

Low(2) - Information Disclosure - Debug Error Messages

Description

The response appeared to contain common error messages returned by platforms such

as ASP.NET, and Web-servers such as IIS and Apache. You can configure the list of

common debug messages.

Instances 2

URL / Method
 GET http://192.168.1.47/instructions.php?doc=readme

 GET http://192.168.1.47/instructions.php

Solution Disable debugging messages before pushing to production.

Other Information PHP warning

Reference

Info(100) - Timestamp Disclosure - Unix

Description A timestamp was disclosed by the application/web server - Unix

Instances 100

URL / Method

 POST http://192.168.1.47/vulnerabilities/javascript/

 GET http://192.168.1.47/vulnerabilities/javascript/

 POST http://192.168.1.47/vulnerabilities/javascript/

Out of 100 instances

Solution
Manually confirm that the timestamp data is not sensitive, and that the data cannot be

aggregated to disclose exploitable patterns.

Other Information 606105819, which evaluates to: 1989-03-17 03:43:39

Reference http://projects.webappsec.org/w/page/13246936/Information%20Leakage

Info(100) - User Agent Fuzzer

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://tools.ietf.org/html/draft-ietf-
http://192.168.1.47/instructions.php?doc=readme
http://192.168.1.47/instructions.php
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/javascript/
http://projects.webappsec.org/w/page/13246936/Information%20Leakage

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 33

Tel: +1 (415) 340-8020

Description Check for differences in response based on fuzzed User Agent (eg. mobile sites, access

as a Search Engine Crawler). Compares the response statuscode and the hashcode of

the response body with the original response.

Instances 100

URL / Method

 GET http://192.168.1.47/logout.php

 GET http://192.168.1.47/vulnerabilities/captcha/

 GET http://192.168.1.47/login.php

Out of 100 instances

Solution

Other Information

Reference https://owasp.org/wstg

Info(4) - Information Disclosure - Sensitive Information in URL

Description

The request appeared to contain sensitive information leaked in the URL. This can

violate PCI and most organizational compliance policies. You can configure the list of

strings for this check to add or remove values specific to your environment.

Instances 4

URL / Method

 GET http://192.168.1.47/vulnerabilities/brute/?

Login=Login&password=ZAP&username=ZAP

 GET http://192.168.1.47/vulnerabilities/csrf/?

Change=Change&password_conf=ZAP&password_new=ZAP

 GET http://192.168.1.47/vulnerabilities/brute/?

Login=Login&password=ZAP&username=ZAP

Out of 4 instances

Solution Do not pass sensitive information in URIs.

Other Information
The URL contains potentially sensitive information. The following string was found via

the pattern: user username

Reference

Info(63) - Cookie Slack Detector

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/logout.php
http://192.168.1.47/vulnerabilities/captcha/
http://192.168.1.47/login.php
https://owasp.org/wstg
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 34

Tel: +1 (415) 340-8020

Description Repeated GET requests: drop a different cookie each time, followed by normal request

with all cookies to stabilize session, compare responses against original baseline GET.

This can reveal areas where cookie based authentication/attributes are not actually

enforced.

Instances 63

URL / Method

 GET http://192.168.1.47/dvwa/images/lock.png

 GET http://192.168.1.47/vulnerabilities/sqli_blind/

 GET http://192.168.1.47/vulnerabilities/csp/

Out of 63 instances

Solution

Other Information

Cookies that don't have expected effects can reveal flaws in application logic. In the

worst case, this can reveal where authentication via cookie token(s) is not actually

enforced. These cookies affected the response: These cookies did NOT affect the

response: security,PHPSESSID

Reference http://projects.webappsec.org/Fingerprinting

Info(20) - User Controllable HTML Element Attribute (Potential XSS)

Description

This check looks at user-supplied input in query string parameters and POST data to

identify where certain HTML attribute values might be controlled. This provides hot-spot

detection for XSS (cross-site scripting) that will require further review by a security

analyst to determine exploitability.

Instances 20

URL / Method

 POST http://192.168.1.47/vulnerabilities/javascript/

 POST http://192.168.1.47/vulnerabilities/upload/

 POST http://192.168.1.47/vulnerabilities/csp/

Out of 20 instances

Solution Validate all input and sanitize output it before writing to any HTML attributes.

Other Information

User-controlled HTML attribute values were found. Try injecting special characters to

see if XSS might be possible. The page at the following URL: http://192.168.1.47

/vulnerabilities/javascript/ appears to include user input in: a(n) [input] tag [value]

attribute The user input found was: send=Submit The user-controlled value was: submit

Reference http://websecuritytool.codeplex.com/wikipage?title=Checks#user-controlled-html-attribute

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/dvwa/images/lock.png
http://192.168.1.47/vulnerabilities/sqli_blind/
http://192.168.1.47/vulnerabilities/csp/
http://projects.webappsec.org/Fingerprinting
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/upload/
http://192.168.1.47/vulnerabilities/csp/
http://websecuritytool.codeplex.com/wikipage?title=Checks#user-controlled-html-attribute

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 35

Tel: +1 (415) 340-8020

Info(1) - Information Disclosure - Suspicious Comments

Description

The response appears to contain suspicious comments which may help an attacker.

Note: Matches made within script blocks or files are against the entire content not only

comments.

Instances 1

URL / Method GET http://192.168.1.47/setup.php

Solution
Remove all comments that return information that may help an attacker and fix any

underlying problems they refer to.

Other Information The following comment/snippet was identified via the pattern: \bDB\b

Reference

Info(2) - Information Disclosure - Suspicious Comments

Description

The response appears to contain suspicious comments which may help an attacker.

Note: Matches made within script blocks or files are against the entire content not only

comments.

Instances 2

URL / Method
 GET http://192.168.1.47/vulnerabilities/javascript/

 POST http://192.168.1.47/vulnerabilities/javascript/

Solution
Remove all comments that return information that may help an attacker and fix any

underlying problems they refer to.

Other Information

The following comment/snippet was identified via the pattern: \bFROM\b /* MD5 code

from here https://github.com/blueimp/JavaScript-MD5 */ !function(n){"use strict";function t

(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)>>32-t}function e(n,e,o,

u,c,f){return t(r(t(t(e,n),t(u,f)),c),o)}function o(n,t,r,o,u,c,f){return e(t&r|~t&o,n,t,u,c,f)}

function u(n,t,r,o,u,c,f){return e(t&o|r&~o,n,t,u,c,f)}function c(n,t,r,o,u,c,f){return e(t^r^o,n,

t,u,c,f)}function f(n,t,r,o,u,c,f){return e(r^(t|~o),n,t,u,c,f)}function i(n,r){n[r>>5]|=128>>9>5]

>>>t%32&255);return r}function d(n){var t,r=[];for(r[(n.length>>2)-1]=void 0,t=0;t>5]|=

(255&n.charCodeAt(t/8))16&&(o=i(o,8*n.length)),r=0;r>>4&15)+"0123456789abcdef".

charAt(15&t);return e}function v(n){return unescape(encodeURIComponent(n))}function

m(n){return h(v(n))}function p(n){return g(m(n))}function s(n,t){return l(v(n),v(t))}function

C(n,t){return g(s(n,t))}function A(n,t,r){return t?r?s(t,n):C(t,n):r?m(n):p(n)}"function"

==typeof define&&define.amd?define(function(){return A}):"object"==typeof

module&&module.exports?module.exports=A:n.md5=A}(this); function rot13(inp) { return

inp.replace(/[a-zA-Z]/g,function(c){return String.fromCharCode((c=(c=c.charCodeAt(0)

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/setup.php
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/javascript/

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 36

Tel: +1 (415) 340-8020

+13)?c:c-26);}); } function generate_token() { var phrase = document.getElementById

("phrase").value; document.getElementById("token").value = md5(rot13(phrase)); }

generate_token();

Reference

Info(1) - Cookie Poisoning

Description

This check looks at user-supplied input in query string parameters and POST data to

identify where cookie parameters might be controlled. This is called a cookie poisoning

attack, and becomes exploitable when an attacker can manipulate the cookie in various

ways. In some cases this will not be exploitable, however, allowing URL parameters to

set cookie values is generally considered a bug.

Instances 1

URL / Method POST http://192.168.1.47/security.php

Solution

Do not allow user input to control cookie names and values. If some query string

parameters must be set in cookie values, be sure to filter out semicolon's that can serve

as name/value pair delimiters.

Other Information

An attacker may be able to poison cookie values through POST parameters. To test if

this is a more serious issue, you should try resending that request as a GET, with the

POST parameter included as a query string parameter. For example: http://nottrusted.

com/page?value=maliciousInput. This was identified at: http://192.168.1.47/security.php

User-input was found in the following cookie: security=low The user input was:

security=low

Reference http://websecuritytool.codeplex.com/wikipage?title=Checks#user-controlled-cookie

Info(1) - Modern Web Application

Description
The application appears to be a modern web application. If you need to explore it

automatically then the Ajax Spider may well be more effective than the standard one.

Instances 1

URL / Method GET http://192.168.1.47/phpinfo.php

Solution This is an informational alert and so no changes are required.

Other Information
Links have been found that do not have traditional href attributes, which is an indication

that this is a modern web application.

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/security.php
http://websecuritytool.codeplex.com/wikipage?title=Checks#user-controlled-cookie
http://192.168.1.47/phpinfo.php

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 37

Tel: +1 (415) 340-8020

Reference

https://scanrepeat.com
mailto:contact@scanrepeat.com

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 38

Tel: +1 (415) 340-8020

Tested URL Resources
The following resources were analyzed during the scan.

http://192.168.1.47/dvwa

https://192.168.1.47

http://192.168.1.47/

http://192.168.1.47/about.php

http://192.168.1.47/about.php/c9a7n

http://192.168.1.47/about.php/c9a7n/84zqc

http://192.168.1.47/docs

http://192.168.1.47/docs/DVWA_v1.3.pdf

http://192.168.1.47/docs/

http://192.168.1.47/dvwa/css

http://192.168.1.47/dvwa/css/login.css

http://192.168.1.47/dvwa/css/main.css

http://192.168.1.47/dvwa/css/

http://192.168.1.47/dvwa/images/

http://192.168.1.47/dvwa/images

http://192.168.1.47/dvwa/images/lock.png

http://192.168.1.47/dvwa/images/login_logo.png

http://192.168.1.47/dvwa/images/logo.png

http://192.168.1.47/dvwa/images/RandomStorm.png

http://192.168.1.47/dvwa/images/spanner.png

http://192.168.1.47/dvwa/js/

http://192.168.1.47/dvwa/js

http://192.168.1.47/dvwa/js/add_event_listeners.js

http://192.168.1.47/dvwa/js/dvwaPage.js

http://192.168.1.47/dvwa/

http://192.168.1.47/favicon.ico

http://192.168.1.47/ids_log.php

http://192.168.1.47/ids_log.php/c9a7n

http://192.168.1.47/ids_log.php/c9a7n/84zqc

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/dvwa
https://192.168.1.47
http://192.168.1.47/
http://192.168.1.47/about.php
http://192.168.1.47/about.php/c9a7n
http://192.168.1.47/about.php/c9a7n/84zqc
http://192.168.1.47/docs
http://192.168.1.47/docs/DVWA_v1.3.pdf
http://192.168.1.47/docs/
http://192.168.1.47/dvwa/css
http://192.168.1.47/dvwa/css/login.css
http://192.168.1.47/dvwa/css/main.css
http://192.168.1.47/dvwa/css/
http://192.168.1.47/dvwa/images/
http://192.168.1.47/dvwa/images
http://192.168.1.47/dvwa/images/lock.png
http://192.168.1.47/dvwa/images/login_logo.png
http://192.168.1.47/dvwa/images/logo.png
http://192.168.1.47/dvwa/images/RandomStorm.png
http://192.168.1.47/dvwa/images/spanner.png
http://192.168.1.47/dvwa/js/
http://192.168.1.47/dvwa/js
http://192.168.1.47/dvwa/js/add_event_listeners.js
http://192.168.1.47/dvwa/js/dvwaPage.js
http://192.168.1.47/dvwa/
http://192.168.1.47/favicon.ico
http://192.168.1.47/ids_log.php
http://192.168.1.47/ids_log.php/c9a7n
http://192.168.1.47/ids_log.php/c9a7n/84zqc

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 39

Tel: +1 (415) 340-8020

http://192.168.1.47/ids_log.php/c9a7n/84zqc?clear_log=Clear%20Log

http://192.168.1.47/ids_log.php?clear_log=Clear+Log

http://192.168.1.47/instructions.php

http://192.168.1.47/instructions.php/c9a7n

http://192.168.1.47/instructions.php/c9a7n/84zqc

http://192.168.1.47/instructions.php/c9a7n/84zqc?doc=PHPIDS-license

http://192.168.1.47/instructions.php?doc=PHPIDS-license

http://192.168.1.47/login.php

http://192.168.1.47/login.php/c9a7n

http://192.168.1.47/login.php/c9a7n/84zqc

http://192.168.1.47/logout.php

http://192.168.1.47/phpinfo.php

http://192.168.1.47/phpinfo.php/c9a7n

http://192.168.1.47/phpinfo.php/c9a7n/84zqc

http://192.168.1.47/robots.txt

http://192.168.1.47/security.php

http://192.168.1.47/security.php/c9a7n

http://192.168.1.47/security.php/c9a7n/84zqc

http://192.168.1.47/security.php/c9a7n/84zqc?phpids=on

http://192.168.1.47/security.php?phpids=on

http://192.168.1.47/security.php?test=%2522%3E%3Cscript%3Eeval(window.name)%3C/script%3E

http://192.168.1.47/setup.php

http://192.168.1.47/setup.php/c9a7n

http://192.168.1.47/setup.php/c9a7n/84zqc

http://192.168.1.47/sitemap.xml

http://192.168.1.47/vulnerabilities/

http://192.168.1.47/vulnerabilities

http://192.168.1.47/vulnerabilities/brute/

http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP

http://192.168.1.47/vulnerabilities/captcha/

http://192.168.1.47/vulnerabilities/csp

http://192.168.1.47/vulnerabilities/csp/ZAP

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/ids_log.php/c9a7n/84zqc?clear_log=Clear%20Log
http://192.168.1.47/ids_log.php?clear_log=Clear+Log
http://192.168.1.47/instructions.php
http://192.168.1.47/instructions.php/c9a7n
http://192.168.1.47/instructions.php/c9a7n/84zqc
http://192.168.1.47/instructions.php/c9a7n/84zqc?doc=PHPIDS-license
http://192.168.1.47/instructions.php?doc=PHPIDS-license
http://192.168.1.47/login.php
http://192.168.1.47/login.php/c9a7n
http://192.168.1.47/login.php/c9a7n/84zqc
http://192.168.1.47/logout.php
http://192.168.1.47/phpinfo.php
http://192.168.1.47/phpinfo.php/c9a7n
http://192.168.1.47/phpinfo.php/c9a7n/84zqc
http://192.168.1.47/robots.txt
http://192.168.1.47/security.php
http://192.168.1.47/security.php/c9a7n
http://192.168.1.47/security.php/c9a7n/84zqc
http://192.168.1.47/security.php/c9a7n/84zqc?phpids=on
http://192.168.1.47/security.php?phpids=on
http://192.168.1.47/security.php?test=%2522%3E%3Cscript%3Eeval(window.name)%3C/script%3E
http://192.168.1.47/setup.php
http://192.168.1.47/setup.php/c9a7n
http://192.168.1.47/setup.php/c9a7n/84zqc
http://192.168.1.47/sitemap.xml
http://192.168.1.47/vulnerabilities/
http://192.168.1.47/vulnerabilities
http://192.168.1.47/vulnerabilities/brute/
http://192.168.1.47/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://192.168.1.47/vulnerabilities/captcha/
http://192.168.1.47/vulnerabilities/csp
http://192.168.1.47/vulnerabilities/csp/ZAP

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 40

Tel: +1 (415) 340-8020

http://192.168.1.47/vulnerabilities/csp/

http://192.168.1.47/vulnerabilities/csrf/

http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP

http://192.168.1.47/vulnerabilities/exec/

http://192.168.1.47/vulnerabilities/fi/?page=file3.php

http://192.168.1.47/vulnerabilities/javascript/

http://192.168.1.47/vulnerabilities/javascript/?query=query%7Ctimeout+%2FT+15

http://192.168.1.47/vulnerabilities/sqli/

http://192.168.1.47/vulnerabilities/sqli/?Submit=Submit&id=ZAP

http://192.168.1.47/vulnerabilities/sqli_blind/

http://192.168.1.47/vulnerabilities/sqli_blind/?Submit=Submit&id=ZAP

http://192.168.1.47/vulnerabilities/upload/

http://192.168.1.47/vulnerabilities/weak_id/

http://192.168.1.47/vulnerabilities/xss_d/

http://192.168.1.47/vulnerabilities/xss_d/?default

http://192.168.1.47/vulnerabilities/xss_r/

http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP

http://192.168.1.47/vulnerabilities/xss_s/

http://192.168.1.47/vulnerabilities/xss_s/?query=query+AND+1%3D1

https://scanrepeat.com
mailto:contact@scanrepeat.com
http://192.168.1.47/vulnerabilities/csp/
http://192.168.1.47/vulnerabilities/csrf/
http://192.168.1.47/vulnerabilities/csrf/?Change=Change&password_conf=ZAP&password_new=ZAP
http://192.168.1.47/vulnerabilities/exec/
http://192.168.1.47/vulnerabilities/fi/?page=file3.php
http://192.168.1.47/vulnerabilities/javascript/
http://192.168.1.47/vulnerabilities/javascript/?query=query%7Ctimeout+%2FT+15
http://192.168.1.47/vulnerabilities/sqli/
http://192.168.1.47/vulnerabilities/sqli/?Submit=Submit&id=ZAP
http://192.168.1.47/vulnerabilities/sqli_blind/
http://192.168.1.47/vulnerabilities/sqli_blind/?Submit=Submit&id=ZAP
http://192.168.1.47/vulnerabilities/upload/
http://192.168.1.47/vulnerabilities/weak_id/
http://192.168.1.47/vulnerabilities/xss_d/
http://192.168.1.47/vulnerabilities/xss_d/?default
http://192.168.1.47/vulnerabilities/xss_r/
http://192.168.1.47/vulnerabilities/xss_r/?name=ZAP
http://192.168.1.47/vulnerabilities/xss_s/
http://192.168.1.47/vulnerabilities/xss_s/?query=query+AND+1%3D1

Website: scanrepeat.com Email: contact@scanrepeat.com
Page 41

Tel: +1 (415) 340-8020

CONTACT

Website: scanrepeat.com

Email: contact@scanrepeat.com

Tel: +1 (415) 340-8020

https://scanrepeat.com
mailto:contact@scanrepeat.com
https://scanrepeat.com
mailto:contact@scanrepeat.com

	Table of Contents
	Executive Summary
	Security Timeline
	Risk Summary
	Risk Scoring
	Alert Definition
	Open Source Tools Used
	Scan Project Settings
	Security Scan Results - Detailed Security Alerts
	High(27) - Anti CSRF Tokens Scanner
	High(83) - GDPR/CCPA: Potential exposure of personal identification data (first name and last name)
	High(3) - GDPR/CCPA: Potential exposure of external e-mail adresses
	High(4) - Cross Site Scripting (Reflected)
	High(3) - Remote OS Command Injection
	High(5) - SQL Injection
	High(2) - PII Disclosure
	High(5) - Cross Site Scripting (DOM Based)
	High(2) - Cross Site Scripting (Reflected)
	High(1) - Path Traversal
	High(1) - GDPR/CCPA: Possible detection of exposed France IBAN Bank Account number
	High(1) - GDPR/CCPA: Possible detection of exposed Germany IBAN Bank Account number
	Medium(1) - HTTP Only Site
	Medium(37) - Reverse Tabnabbing
	Medium(10) - Relative Path Confusion
	Medium(2) - CSP Scanner: Wildcard Directive
	Medium(43) - X-Frame-Options Header Not Set
	Medium(6) - Directory Browsing
	Low(44) - Content Security Policy (CSP) Header Not Set
	Low(64) - Server Leaks Version Information via "Server" HTTP Response Header Field
	Low(30) - Absence of Anti-CSRF Tokens
	Low(55) - X-Content-Type-Options Header Missing
	Low(2) - Cross-Domain JavaScript Source File Inclusion
	Low(4) - Private IP Disclosure
	Low(5) - Cookie No HttpOnly Flag
	Low(5) - Cookie Without SameSite Attribute
	Low(2) - Information Disclosure - Debug Error Messages
	Info(100) - Timestamp Disclosure - Unix
	Info(100) - User Agent Fuzzer
	Info(4) - Information Disclosure - Sensitive Information in URL
	Info(63) - Cookie Slack Detector
	Info(20) - User Controllable HTML Element Attribute (Potential XSS)
	Info(1) - Information Disclosure - Suspicious Comments
	Info(2) - Information Disclosure - Suspicious Comments
	Info(1) - Cookie Poisoning
	Info(1) - Modern Web Application

	Tested URL Resources

